<--- Back to Details
First PageDocument Content
Theoretical computer science / Computational complexity theory / Mathematics / Logic in computer science / NP-complete problems / Boolean algebra / Boolean satisfiability problem / Electronic design automation / Symposium on Discrete Algorithms / Approximation algorithm / Random walk / 2-satisfiability
Date: 2006-02-09 03:56:19
Theoretical computer science
Computational complexity theory
Mathematics
Logic in computer science
NP-complete problems
Boolean algebra
Boolean satisfiability problem
Electronic design automation
Symposium on Discrete Algorithms
Approximation algorithm
Random walk
2-satisfiability

Curriculum Vitae: Alexis C. Kaporis Contact information Address : Phone:

Add to Reading List

Source URL: students.ceid.upatras.gr

Download Document from Source Website

File Size: 139,44 KB

Share Document on Facebook

Similar Documents

Approximation algorithms  An algorithm has approximation ratio r if it outputs solutions with cost such that c/c* ≤ r and c*/c ≤ r where c* is the optimal cost.

Approximation algorithms An algorithm has approximation ratio r if it outputs solutions with cost such that c/c* ≤ r and c*/c ≤ r where c* is the optimal cost.

DocID: 1vcdB - View Document

A Quadratically Convergent Algorithm for Structured Low-Rank Approximation ´ Eric Schost1 and Pierre-Jean Spaenlehauer2 1

A Quadratically Convergent Algorithm for Structured Low-Rank Approximation ´ Eric Schost1 and Pierre-Jean Spaenlehauer2 1

DocID: 1uPNr - View Document

A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem (Extended Abstract) Ola Svensson*  Jakub Tarnawski†

A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem (Extended Abstract) Ola Svensson* Jakub Tarnawski†

DocID: 1ut6L - View Document

Approximating the Diameter of Planar Graphs in Near Linear Time OREN WEIMANN and RAPHAEL YUSTER, University of Haifa We present a (1 + ε)-approximation algorithm running in O( f (ε) · n log4 n) time for finding the di

Approximating the Diameter of Planar Graphs in Near Linear Time OREN WEIMANN and RAPHAEL YUSTER, University of Haifa We present a (1 + ε)-approximation algorithm running in O( f (ε) · n log4 n) time for finding the di

DocID: 1usZh - View Document

A 1.8 Approximation Algorithm for Augmenting Edge-Connectivity of a Graph from 1 to 2 GUY EVEN Tel-Aviv University JON FELDMAN Google, NY

A 1.8 Approximation Algorithm for Augmenting Edge-Connectivity of a Graph from 1 to 2 GUY EVEN Tel-Aviv University JON FELDMAN Google, NY

DocID: 1u559 - View Document